Posts tagged with #Probability

6 posts found

决策树

决策树是一种用于分类和回归(比如预测房价)的非线性方法。它的核心结构就像一棵树,包含两种节点: 1. 内部节点 (Internal nodes):每个内部节点都**会对一个特征进行测试,并根据测试结果决定走向哪个分支**。通常一次只测试一个特征。 2...

对机器学习方法的统计证明

为了给回归问题建立一个统计模型,我们做出以下假设: $$ y_i=g(X_i) + \epsilon_i $$ 这个公式描述了我们观察到的数据点 $(X_i, y_i)$ 是如何产生的,其中: * $g(X_i)$ 是真实函数 (Ground Truth)。我们相信**在现实中,输入 $X$ 和输出 $y$ 之间存在一个我们不知道的、但固定不变的潜在规律...

Homework 3

> Let $f_{X\mid Y=C_i}(x) \sim \mathcal{N}(\mu _i,\sigma^2)$ for a two-class, one-dimensional ($d = 1$) classification problem with classes $C_1$ and $C_2$, $P(Y = C_1) = P(Y = C_2) = 1/2$, and...

决策理论

在我们前面讲解的 SVM 分类器中,我们试图找到**一个明确的边界(超平面)来分隔不同类别的数据**。但现实世界中,数据往往是模糊和重叠的。这就引出了概率分类器的需求:我们不再给出一个“是”或“否”的确定性答案,而是**给出一个属于某个类别的概率**。 我们使用贝叶斯定理来知道我们的决策。首先定义如下的概念: * 决策规则 (Decision Rule)...

LDA & QDA 补充

我们假定类别 $K$ 的数据符合正态分布: $$ f_k(x)=\frac{1}{\sqrt{2\pi}\,\sigma_k}\exp\. \left(-\frac{(x-\mu _k)^2}{2\sigma_k^2}\right) $$ 根据贝叶斯公式: $$ P(Y=k\mid X=x)=\frac{\pi_k f_k(x)}{\sum_{l=1}^{K}\pi_l f_l(x)}...

概率统计基础

> 本笔记是对 [CMU Pratical Data Science Course](https://www. datasciencecourse...